HOME PAGE Welcome to the site of Economy and Forecasting journal

№ 2019/3

Forecasting methods and models


DEBUNOV Leonid Mykolajovych1

1Oles Honchar Dnipro National University

Modeling company's financial sustainability with the use of artificial neural networks

Economy and forecasting 2019; 3:76-93https://doi.org/10.15407/econforecast2019.03.076


ABSTRACT ▼


JEL: C45

Article in English (pp. 76 - 93) DownloadDownloads :15

REFERENCES ▼

1. Altman, E.I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 4,589-609. doi.org/10.1111/j.1540-6261.1968.tb00843.x
2. Beermann, K. (1976). Prognosemöglichkeiten von Kapitalverlusten mit Hilfe von Jahresabschlüssen. Schriftenreihe des Instituts für Revisionswesen der Westfälischen Wilhelms, 11, 118-121.
3. Taffler, R., Tishaw, H. (1977). Going, going, gone – four factors which predict. Accountancy, 88: 1003, 50-54.
4. Al-Kassar, T.A., Soileau, J.S. (2014). Financial performance evaluation and bankruptcy prediction (failure). Arab Economic and Business Journal, 9: 2, 147-155. doi.org/10.1016/j.aebj.2014.05.010
5. Ozili, P. K. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18: 4, 329-340. doi.org/10.1016/j.bir.2017.12.003
6. Sharapov, O.D., Kajdanovych, D.B. (2012). Bankruptcy Assessment Based on Companies' Financial Condition Indicators Using Counterpart Neural Networks.Neyro-nechitki tekhnolohiyi modelyuvannya v ekonomitsi– Neuro-fuzzy modeling technologies in economics, 1, 207-227[in Ukrainian].
7. Tereschenko, O.O. (2003). Discriminant model of integral estimation of the financial state of the enterprise.. Ekonomika Ukrayiny – Economy of Ukraine, 8, 38-45 [in Ukrainian].
8. Matvijchuk, A.V. (2010). Modeling the financial sustainability of enterprises using fuzzy logic, neural networks and discriminant analysis. Visnyk NAN Ukrayiny – Bulletin of the National Academy of Sciences of Ukraine,9, 24-46 [in Ukrainian].
9. Matvijchuk, A.V. (2011). Artificial intelligence in economics: neural networks, fuzzy logic. Kyiv: Kyiv National University of Economics[in Ukrainian].
10. Matvijchuk, A.V. (2013). Fuzzy, neural network and discriminatory models for diagnosing bankruptcy. Neyro-nechitki tekhnolohiyi modelyuvannya v ekonomitsi –Neuro-fuzzy modeling technologies in economics,2, 71-118 [in Ukrainian].
11. Pavlovs'ka, O.V. (2001). Improvement of methods of analysis of financial condition of enterprises. Finansy Ukrayiny– Finance of Ukraine, 11, 54-61 [in Ukrainian].
12. Poddier'ohin, A.M., Naumova, L.Yu. (2011). Financial stability of enterprises in the economy of Ukraine. Kyiv: Kyiv National University of Economics [in Ukrainian].
13. Poddier'ohin, A.M., Buriak, L.D., Nam, H.H. at al. (1999). Business Finance. Kyiv: Kyiv National University of Economics [in Ukrainian].
14. Davydova, G.V., Belikov, A.Yu. (1999). Methodology for quantitative assessment of the risk of bankruptcy of enterprises. Upravleniye riskom – Risk management, 3, 13-20 [in Russian].
15. Buriak, L.D., Pavlikovs'kyj, A.M. (2013). Management of finances of small business entities. Kyiv: Kyiv National University of Economics [in Ukrainian].
16. Yakovenko, O.H, (2017). Mathematical models of activity processes in economic dynamics. Dnipro: Bila K.O. [in Ukrainian].
17. Vershyhora, V.H, (2013).Economic-mathematical model of effective financial strategy of enterprise stability.Visnyk Chernivets'koho torhovel'no-ekonomichnoho instytutu. Ekonomichni nauk –Bulletin of Chernivtsi Trade and Economic Institute. Economic sciences, 2, 352-357 [in Ukrainian].
18. Tymoschuk, O.L., Dorundiak, K.M. (2018). Bankruptcy probability estimation of enterprises through discriminatory analysis and neural networks. Systemni doslidzhennya ta informatsiyni tekhnolohiyi – Systems research and information technology, 2, 22-34. doi.org/10.20535/SRIT.2308-8893.2018.2.03 [in Ukrainian].
19. Levchenko, O.A. (2018). Modeling of financial stability assessment of financing mechanism of leasing operations. Visnyk Universytetu bankivs'koi spravy – Bulletin of the University of Banking,1 (31), 105-113 [in Ukrainian].
20. Kuz'omko, V., Mykhajliuk, M. (2017). Application of the modified nine-component methodology to diagnose the level of financial soundness of an enterprise.Visnyk Kyivs'koho natsional'noho universytetu imeni Tarasa Shevchenka. Ekonomika – Bulletin of Taras Shevchenko National University of Kyiv. Economy, 3(192), 24-30. doi.org/10.17721/1728-2667.2017/192-3/5 [in Ukrainian].
21. Kharchenko, Yu.A. (2019). Modeling financial sustainability of an industrial enterprise. Naukovyy visnyk Mizhnarodnoho humanitarnoho universytetu. Seriya : Ekonomika i menedzhment – Scientific Bulletin of the International Humanities University. Series: Economics and Management, 36, 199-207 [in Ukrainian].
22. Dekhtiar, N.A., Dejneka, O.V., Chernihovets', K.V.(2016). Assessment of financial stability of the enterprise using the methods of economic and mathematical modeling. Visnyk Odes'koho natsional'noho universytetu. Seriya: Ekonomika – Bulletin of the Odessa National University. Series: Economics, 21: 1, 195-199 [in Ukrainian].
23. Debunov, L.M., Yakovenko, A.G. (2019). Analysis of modern approaches to defining the concept of financial stability of the enterprise. Naukovi zapysky Natsional'noho universytetu Ostrozka akademiia, seriya Ekonomika – Scientific notes of the National University Ostroh Academy, series Economics, 12(40), 86-91. doi.org/10.25264/2311-5149-2019-12(40)-86-91 [in Ukrainian].
24. Debunov, L.N. (2017).The use of artificial neural networks in modeling the financial stability of an enterprise. Biznes Inform – Business Inform, 9, 112-119 [in Russian].
25. Debunov, L.M., Yakovenko, O.H. (2018). Simulation of the limit of financial sustainability of enterprises using artificial neural networks. Economic Stability Studies, 1(1), 59-66 [in Ukrainian].